NOTES 10.4 - INSCRIBED ANGLES

INSCRIBED ANGLE:

EXAMPLE 1: Name ALL of the inscribed angles and their corresponding intercepted arcs below.

Inscribed angles/Intercepted Arc:

THEOREM: If an angle is inscribed in a circle, then the measure of the angle is half the measure of the intercepted arc.
EXAMPLE 2: Given that $\boldsymbol{m} \overparen{B C}=100^{\circ}$, find the value of ' \boldsymbol{x} ' in circle 0.

$$
x=
$$

\qquad

THEOREM: If two inscribed angles of a circle or congruent circles intercept congruent arcs or the same arc, then the angles are congruent.
EXAMPLE 3: In circle $\mathbf{Q}, \boldsymbol{m} \overparen{S T}=68^{\circ}$. Find the $\boldsymbol{m} \angle 1$ and $\boldsymbol{m} \angle 2$.

THEOREM: If an inscribed angle of a circle intercepts a semicircle, then the angle is a right angle.
EXAMPLE 4: Find the value of ' x '.

$x=$ \qquad
EXAMPLE 5: In circle A, $m \angle 1=(6 x+11)^{\circ}, m \angle 2=(9 x+19)^{\circ}$,
$m \angle 3=(4 y-25)^{\circ}, m \angle 4=(3 y-9)^{\circ}$, and $\mathrm{PQ} \cong \overparen{R S}$.
Find $m \angle 1, m \angle 2, m \angle 3$, and $m \angle 4$.

$m \angle 1=$ \qquad
$m \angle 2=$ \qquad
$m \angle 3=$ \qquad
$m \angle 4=$ \qquad

Notes 10.4 - Inscribed Angles (Continued)
THEOREM: If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.
EXAMPLE 6: Quadrilateral QRST is inscribed in circle C. If $m \angle \mathrm{~T}=95^{\circ}, \boldsymbol{m} \angle S=100^{\circ}, \mathrm{TR}=160^{\circ}$, and $\overparen{Q S}=170^{\circ}$, find $m \angle \mathbf{Q}$ and $m \angle \mathbf{R}$.
$\boldsymbol{m} \angle \mathbf{Q}=$ \qquad
$m \angle \mathbf{R}=$ \qquad

EXAMPLE 7: Find the value of the inscribed angle.

EXAMPLE 8: Find the value of ' x '.
$x=$ \qquad

EXAMPLE 9: Hexagon ABCDEF is inscribed in circle 0 . All sides of ABCDEF are congruent. Find the following.

a) $m \overparen{C D}=$ \qquad
b) $m \angle B F E=$ \qquad
c) $m \angle B C D=$

