

EXAMPLE 1: \mathbf{Q} is the center of this circle.
a) Name the circle: \qquad
b) Name all radii shown:

c) What is the length of any radius of this circle? \qquad
d) What would be the length of any diameter of this circle? \qquad
e) Name all of the interior points shown: \qquad
f) Name all of the exterior points shown: \qquad
EXAMPLE 2: Calculate the radius or diameter as indicated.
a) $r=27$ in. $\quad d=$ \qquad b) $d=12 x \quad r=$ \qquad
c) $d=18.6 \mathrm{~cm} \quad r=$ \qquad

EXAMPLE 3: Name each of the following.
a) Center:
b) All Radii:
c) All Chords:
d) All Secants:
e) Diameter: \qquad
f) Tangent:

g) Point of Tangency:

EXAMPLE 4: Name the following.
a) Tangent:
b) Point of tangency:
c) Point in the interior:
d) Point in the exterior:

THEOREM: If a line is tangent to a circle, then it is PERPENDICULAR to the radius drawn to the point of tangency.
EXAMPLE 5: Refer to $\odot C$ with tangent $\overline{\mathrm{AB}}$. Find ' x '.

$$
x=
$$

THEOREM: If two segments from the same EXTERIOR point are tangent to a circle, then they are congruent.
EXAMPLE 6: Find the value of ' x '.

\qquad
When circles are inscribed in polygons, the polygons are said to be CIRCUMSCRIBED polygons.

In such polygons, each side is TANGENT to the circle.
EXAMPLE 7: \triangle TRW is circumscribed about $\odot A$. If the perimeter of $\Delta T R W$ is $50, T K=3$, and $W M=9.5$, find $T R$.

$T R=$

EXAMPLE 8: Given that $\mathrm{OA}=12, \mathrm{OB}=6$, and $m \angle \mathrm{BAC}=60^{\circ}$, find the following.
a) $\mathbf{O C}=$ \qquad
b) $\mathrm{ED}=$ \qquad
c) $\mathrm{AB}=$ \qquad
d) $\mathrm{AC}=$ \qquad
e) $m \angle \mathrm{BAO}=$ \qquad
f) $m \angle O C A=$ \qquad
g) $m \angle A O C=$ \qquad
h) $m \angle E O C=$ \qquad
i) $E A=$ \qquad
EXAMPLE 9: In the figure below, $\overleftrightarrow{\mathbf{R P}}$ is tangent to circle \mathbf{Q} at \mathbf{R}.
Find the radius of circle \mathbf{Q}.

$$
r=
$$

\qquad
EXAMPLE 10: Find the indicated values.

$$
x=
$$

\qquad
$m \angle \mathrm{ABC}=$ \qquad
BC = \qquad
Diameter of circle $\mathrm{C}=$ \qquad

