NOTES 6.1: Perpendicular and Angle Bisectors

Objective: \qquad

Equidistant:

THEOREM	
PERPENDICULAR BISECTOR THEOREM	
In a plane, if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.	If $\overleftrightarrow{\mathbf{C P}}$ is the \perp bisector of $\overline{\mathrm{AB}}$, then
CONVERSE OF THE PERPENDICULAR BISECTOR THEOREM	
In a plane, if a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment.	If DA = DB then point
	\perp bisector of lies on the

Example 1:

Find $A B$ and explain your reasoning.

Example 2:

Find SU and explain your reasoning.

| THEOREM |
| :--- | :--- |
| ANGLE BISECTOR THEOREM |
| If a point lies on the bisector of an angle, |
| then it is equidistant from the two sides of |
| the angle. |

