NOTES 6.1: Perpendicular and Angle Bisectors

Objective: _____

Equidistant:

THEOREM	DIAGRAM
ANGLE BISECTOR THEOREM If a point lies on the bisector of an angle, then it is equidistant from the two sides of the angle.	$\overrightarrow{A} \xrightarrow{B} \xrightarrow{D} \xrightarrow{D} \xrightarrow{C}$ If \overrightarrow{AD} bisects $\angle BAC$ and $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$, then
CONVERSE OF THE ANGLE BISECTOR THEOREM If a point is in the interior of an angle and is equidistant from the two sides of the angle, then it lies on the bisector of the angle.	$\overrightarrow{A} \underbrace{\overrightarrow{D}}_{C}$ If $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$ and $DB = DC$, then \overrightarrow{AD} bisects
Example 3:	Example 4:
Find $m \angle CAB$ and explain your reasoning.	Find BD and explain your reasoning.
$A \xrightarrow{\begin{array}{c} c \\ D \\ 20^{\circ} \\ B \\ \end{array}}$	3x + 1 B A C