## NOTES 6.5 \& 6.6 <br> INEQUALITIES IN ONE AND TWO TRIANGLES

Objective: $\qquad$

| THEOREM |
| :---: | :---: |
| TRIANGLE LONGER SIDE THEOREM |
| If one side of a triangle is longer than another side, |
| then the angle opposite the longer side is larger |
| than the angle opposite the shorter side. |

## EXAMPLES:

| 1. Write the angles in <br> order from smallest <br> to largest. |  |
| :--- | :--- |
| 3. Tell whether a triangle can have sides with <br> the given lengths. <br> $3,5,8$ | 4. Tell whether a triangle can have sides with <br> the given lengths. <br> order from shortest <br> to longest. |

Finding the Range of Values:
Step 1: Find the SUM of the two sides. (ADD)
Step 2: Find the positive DIFFERENCE of the two sides. (SUBTRACT)
Step 3: Write the inequality: DIFFERENCE $<x<$ SUM

## EXAMPLES:

5. Find the range of values for ' $x$ ' if the side lengths of a triangle are 4, 19 and $x$.
6. Find the range of values for ' $x$ ' if the side lengths of a triangle are 2,7 and $x$.
THEOREM
HINGE THEOREM
If two sides of one triangle are congruent to two
sides of another triangle, and the included angle
of the first is larger than the included angle of the
second, then the third side of the first is longer than
the third side of the second.
7. BC $\qquad$ EF

8. $m \angle A$ $\qquad$ $m \angle D$

9. AB $\qquad$ AC

10. $m<1$ $\qquad$ $m \angle 2$


You can use the Hinge Theorem and its converse to find a range of values in two triangles.
Step 1: Compare the side lengths in the triangle.
$\qquad$ $<$ $\qquad$
So, $\qquad$ $<$ $\qquad$ (substitute the angles)


Step 2: Check that the measures are possible for a triangle (sides and angles must be $>0$ ) (Substitute both angles or sides) $\qquad$ $>0$ $\qquad$ $>0$

Take the larger of the two values for the next step.
Step 3: Combine the inequalities (Step $2 \#<x<$ Step $1 \#$ )
$\qquad$ $<x<$

EXAMPLES: Write and solve an inequality for the possible values of ' $x$ '.



