NOTES 7.1: INTERIOR ANGLES OF POLYGONS

Objective:_____

POLYGON:

Regular Polygon:

Polygons can be CONVEX or CONCAVE .		
Polygons are named according to the	number of	
A 3-sided polygon is called a	·	
A 4-sided polygon is called a		
A 5-sided polygon is called a		
A 6-sided polygon is called a		
A 7-sided polygon is called a		
An 8-sided polygon is called a		
A 9-sided polygon is called a		
A 10-sided polygon is called a		
An 11-sided polygon is called a		
A 12-sided polygon is called a		
An n-sided polygon is called a		

INTERIOR AND EXTERIOR ANGLES

To find the sum of the measures of the interior/exterior angles of a polygon, use the following formulas:

Sum of Interior Angles	Sum of Exterior Angles
To find the measure of each interior/or	

To find the measure of each interior/exterior angle of a regular polygon, use the following formulas:

Each Interior Angle	Each Exterior Angle

EXAMPLE 1: For a heptagon, find:

a)	the sum of the measures of the interior angles.	b)	the sum of the measures of the exterior angles.		
	Sum =		Sum =		
EX.	EXAMPLE 2: For a regular, 13-sided polygon, find:				
a)	the sum of the measures of the interior angles.	b)	the measure of each interior angle.		
	Sum =		Each Angle =		
C)	the sum of the measures of the exterior angles.	d)	the measure of each exterior angle.		
	Sum =		Each Angle =		

Notes 7.1 (Continued)

EXAMPLE 3:	Find the measure of each of the interior angles of a regular dodecagon.
Each angle = _	
EXAMPLE 4:	Find the measure of each of the interior angles of a regular, convex of a 20-gon.
Each angle = $\frac{1}{2}$	
EXAMPLE 5:	If the measure of an interior angle of a regular polygon is 108°, find the number of sides of the polygon.
Number of sid	es =
EXAMPLE 6:	If the measure of <i>an interior angle</i> of a regular polygon is 150°, find the number of sides in the polygon.
Number of sid	es =

EXAMPLE 7:	Find the missing angle.
	130° 130°
	$\langle 90^{\circ}$ $x^{\circ} \rangle$
	130° 120°
~ —	
x —	
EXAMPLE 8:	The measure of an exterior angle of a regular polygon is
	30°. Find the number of sides.
Number of sid	es =
EXAMPLE 9:	The measure of an interior angle of a regular polygon is
	144°. Find the number of sides.
Number of sides =	