Objective: \qquad

Proportions can be used to find the lengths of segments determined by parallel lines.
TRIANGLE PROPORTIONALITY THEOREM: If a line is parallel to one side of a triangle and intersects the other two sides in two distinct points, then it separates these sides into segments of proportional length.

$$
\begin{array}{lll}
\frac{C B}{C A}=\frac{C D}{C D} & \frac{C B}{C A}=\frac{C A}{D A} \\
\frac{C B}{B A}=\frac{C D}{D E} & \frac{C B}{C D}=\frac{D E}{D E} & \frac{B A}{D E}=\frac{C A}{}
\end{array}
$$

EXAMPLE 1: TRUE or FALSE?

(a) $\frac{\mathrm{FA}}{\mathrm{HA}}=\frac{\mathrm{FB}}{\mathrm{TB}}$
(b) $\frac{\mathrm{FT}}{\mathrm{FH}}=\frac{\mathrm{FB}}{\mathrm{FA}}$
(c) $\frac{F H}{F T}=\frac{H A}{T B}$
(d) $\frac{\mathrm{FA}}{\mathrm{FH}}=\frac{\mathrm{FT}}{\mathrm{TB}}$

EXAMPLE 2: Find the value of ' x '.

EXAMPLE 3: Find the value of ' x '.

Likewise, proportional parts of a triangle can be used to prove the converse of this theorem.

THEOREM: If a line intersects two sides of a triangle and separates the sides into corresponding segments of proportional lengths, then the line is parallel to the third side.

EXAMPLE 4: In $\triangle E F G, E G=15, E H=5$, and $L G$ is twice $F L$. Determine whether $\overline{\mathrm{HL}} \| \overline{\mathrm{EF}}$.

EXAMPLE 5: In $\triangle \mathrm{ABC}$, find ' x ' so that $\overline{\mathrm{DE}} \| \overline{\mathrm{CB}}$.
$\mathrm{AC}=30$
$\mathrm{AD}=10$
$\mathrm{AE}=22$
$E B=x+4$

THEOREM: A segment whose endpoints are the midpoints of two sides of a triangle is parallel to the third side of the triangle, and its length is half the length of the third side.

EXAMPLE 6: Find the values of ' x ' and ' y '.

THEOREM: If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.
$\frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{\mathrm{DE}}{O R} \quad \frac{\mathrm{PQ}}{\mathrm{DE}}=\frac{\mathrm{QR}}{}$

EXAMPLE 7: TRUE or FALSE?

(a) $\frac{a}{b}=\frac{c}{d}$
(b) $\frac{a}{c}=\frac{c}{d}$
(c) $\frac{a}{d}=\frac{c}{b}$
(d) $\frac{b}{c}=\frac{a}{d}$

EXAMPLE 8: Find the value of ' x '.

EXAMPLE 9: Find the values of ' x ' and ' y '.

THEOREM: If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

EXAMPLE 10: Find the value of ' x '.

