NOTES 1.1: POINTS, LINES & PLANES

TERM	DESCRIPTION	SKETCH	HOW TO NAME IT
POINT	· names a location · has no size or shape · represented by a dot	• M	Capital Letter -M, N, P
LINE	· represented by a dot · as traight path · has no thickness · goes on forever in 2 directions	A B CAL	Lower-case cursive - 1, m, m & d 2pts on line - AB, Ac, BC
PLANE	· a flat surface · has no thickness · goes on forever in all directions	TK .W	upper-case cursive -R. P. X. M 3 non-collinear points - Plane WX
COLLINEAR	· points that lie on the same line	ASCA MNA	AB, 1 C are collinear M.N.1 Pare non-collinear
COPLANAR	· points or lines that lie on the same plane	(Q.)	x, y, 1 W are coplanar x, y, 1 D arenon-coplanar

EXAMPLES:

MINIFILES.			
1. Name three points that determine plane <i>g</i> .		Name the intersection of planes g and α .	
Points: V, W, &Z		Intersection: (all the same line)	
Name a set of collinear points, and a set of non-collinear points.		Name a set of points, other than those in EXAMPLE 1 that are	
Collinear Points: 11 V 1 W		coplanar.	

Non-Collinear Points: V, W, 4Y Points: X, W, 4Y

Postulates are statements that are assumed to be TRUE. The following are postulates concerning the three basic elements in geometry.

· A line contains: at least 2 points

Collinear Points: U, V, 4 W

- . Through any two points there is: exactly one line
- · A plane contains at least: 3 non-collinear points
- Through any three points there is ______ one plane, and through any three

NON-COLLINEAR points there is __exactly___ one plane.

- If two points are in a plane, then the _____ that contains the points is also in the plane.

Theorems are important statements that must be proven. The following are theorems about these basic elements in geometry.

- If two lines intersect, then they intersect at: exactly one point
- · If two lines intersect, then: exactly one plane contains these lines

TERM	DESCRIPTION	SKETCH	HOW TO NAME IT
Line Segment	· part of a line · consists of 2 endpoints and all points between	R 5	RT OR TR - must use endpoints
Ray	· part of a line · has I endpoint · goes on forever in I direction	END	EN OR ED - First letter must be endpoint
Opposite Rays	· 2 rays that share the same endpoint · extend indefinitely in opposite directions	CB A	AT 4 AB are opposite rays A is the endpoint

EXAMPLES:

- 1. Name all line segments.

 Shown CB, BA, CA

 Not shown XC, CY, XY, BY, AY, AX, BX
- 2. Name all rays.
- 3. Name a pair of opposite rays. $\overrightarrow{BC} \notin \overrightarrow{BA}$

1. Are points S, O, and M coplanar? Yes

Why or why not? Any 3 non-collinear points are coplanar.

- 2. How many "planes" are shown? 💪
- 3. Name the intersection of planes LON and PQM:

a line

Explain: 2 planes intersect at a line

- 4. Name the intersection of plane MQR and \overrightarrow{ON} . Explain. A plane and a line intersect at a point.
- 5. Do S and M determine a line? Yes Why or why not? Any 2 points determine a line?
- 6. How many lines are there through points N and Q? One Explain. Through any 2 points there is exactly one line.
- 7. How many planes are there through points S, T, and R? Infinite Explain. Through any 3 points there is at least one plane.
- 8. Name the intersection of \overrightarrow{PS} and \overrightarrow{OS} . Supplies Explain. 2 Ines intersect at a point.
- 9. How many planes contain \overrightarrow{LO} and \overrightarrow{OS} ? One Explain. If 2 lines intersect, then exactly one plane contains them.
- 10. Is \overrightarrow{OM} in plane LMN? Yes Why or why not? If 2 points are in a plane, then the line that contains them is in the plane.