GEOMETRY FALL SEMESTER REVIEW

PART 1: GEOMETRY BASICS
Using the figure below, name each of the following.

1.	What is another name for plane \mathbb{K} ?
2.	Name a ray opposite $\overrightarrow{\mathrm{RY}}$.
3.	Name a segment on line l.
4.	The intersection of \mathbb{K} and $\overleftrightarrow{\mathrm{XU}}$.

Find the indicated value.

5. $x=$	If A is between X and Y , and $\mathrm{XA}=3 x, \mathrm{AY}=2 x+5$, and $\mathrm{XY}=60$, find the value of ' x '. (Draw a picture...it helps!)
6. $\mathrm{EF}=$	Find the distance between the points $\mathrm{E}(-3,-4)$ and $\mathrm{F}(5,4)$. Simplify the radical if necessary.
7. $\mathrm{AB}=$	Find the distance between the points $A(-3,5)$ and $B(0,1)$. Simplify the radical if necessary.
8. $\mathrm{FG}=$	F is the midpoint of $\overline{\mathrm{EG}}$. If $\mathrm{EF}=2 x+3$ and $\mathrm{EG}=6 x-3$, find FG .

Find the midpoint of the segment with the given endpoints.

9. $\mathrm{M}=\ldots$	$(-7,7)$ and $(-9,8)$
$10 . \mathrm{M}=\square$	$(-3,6)$ and $(2,-8)$

PART 2: ANGLE BASICS
Use the figure to the right to answer questions 11-14.

11.	Name a straight angle.
12.	Which angle is vertical to $\angle \mathrm{STR} ?$
13.	What term describes $\angle \mathrm{STM}$?
14.	If $m \angle \mathrm{STR}=25^{\circ}$, find $m \angle \mathrm{MTN}$.
15.	Which angles are adjacent and form a linear pair?

Find the indicated measures.

16. $m \angle \mathrm{~A}=\ldots$	Find the measures of two complementary angles, $\angle \mathrm{A} \& \angle \mathrm{~B}$, if $m \angle \mathrm{~A}=(7 x+4)^{\circ}$ and $m \angle \mathrm{~B}=(4 x+9)^{\circ}$.
$m \angle \mathrm{~B}=\ldots$	
17. $m \angle \mathrm{~T}=\ldots$	Suppose $\angle \mathrm{T}$ and $\angle \mathrm{U}$ are supplementary. Find $m \angle \mathrm{~T}$ and $m \angle \mathrm{U}$, if $m \angle \mathrm{~T}=(16 x-9)^{\circ}$ and $m \angle \mathrm{U}=(4 x+9)^{\circ}$.
$m \angle \mathrm{U}=\square$	

18. What are the next two items in the pattern? $3,-6,9, \ldots$
19. Write a counterexample that shows the following conjecture is false: "If $\angle 1$ and $\angle 2$ are supplementary, then one of the angles is obtuse."
20. Write the inverse of the conditional statement, "If a number is divisible by 6 , then it is divisible by 3."
21. Write the converse of the conditional statement, "If a number is divisible by 6 , then it is divisible by 3."
22. Write a biconditional statement of the conditional statement, "If $x^{3}=-1$, then $x=-1$.
23. Which properties are used when solving $15=2 x-1$?
24. Identify the property that justifies the statement, "If $\angle \mathrm{B} \cong \angle \mathrm{A}$, then $\angle \mathrm{A} \cong \angle \mathrm{B}$."

Use the square pyramid to the right to answer questions 25 and 26.

25.	Name a segment that is parallel to $\overline{\mathrm{AE} .}$
26. \quad	Name a segment that is perpendicular to $\overline{\mathrm{AD}}$.

PART 4: PARALLEL LINES AND TRANSVERSALS

Find the value of ' x ' in each of the following.
$31 . x=\longrightarrow$

PART 5: SLOPE

33. $m=\ldots$	What is the slope of the line through $(-1,4)$ and $(5,2) ?$
34. $m=$	What is the slope of the line parallel to $y=\frac{1}{2} x+5 ?$
35. $m=$	What is the slope of the line perpendicular to $y=3 x+9 ?$

PART 6: ANGLES OF POLYGONS

36.	Classify the triangle.
37. $x=$	Find the value of ' x '.
38. $x=$	Find the value of ' x '.
39. $x=$	Find the value of ' x '.
40. $x=$	Find the value of ' x '.

PART 7: TRIANGLE CONGRUENCE

41. $x=$	$\Delta \mathrm{KLM} \cong \Delta \mathrm{RST}, m \angle \mathrm{~L}=(3 x+15)^{\circ}$ and $m \angle \mathrm{~S}=(6 x+3)^{\circ}$. What is the value of ' x '?
42. $x=$	What must the value of ' x ' be in order to prove $\Delta \mathrm{SRP} \cong \Delta \mathrm{QRP}$ by HL?
43.	D is the midpoint of $\overline{\mathrm{MT}}, \angle \mathrm{MDB}$ and $\angle \mathrm{T}$ are right angles. What additional information do you need in order to prove $\triangle \mathrm{MDB} \cong \triangle \mathrm{DTZ}$ by SAS?
44.	$\overrightarrow{\mathrm{AD}}$ is the angle bisector of $\angle \mathrm{BAC}$. What additional information do you need in order to prove $\triangle \mathrm{BDA} \cong \triangle \mathrm{CDA}$ by ASA?

PART 8: RELATIONSHIPS WITHIN TRIANGLES
45. $\mathrm{BC}=$

47. $x=$ l \quad| CA $=15 x-9$ and $\mathrm{SR}=12 x$ |
| :--- |
| Find the value of x. |

Mixed-up Answers

46°	$\mathrm{BC}<\mathrm{BA}<\mathrm{CA}$	7
4	11	$\frac{3}{5}<x<\frac{23}{5}$
$8 \sqrt{2}$	Supplementary	12
1	Right angle	5
TQR (or any 3 noncollinear points in Z)	135°	65°
R	$\overrightarrow{\mathrm{RT}}$	$\frac{1}{2}$
If a number is not divisible by 6 , then it is not divisible by 3 .	58	<NTP
$\overline{\mathrm{XR}}$ or $\overline{\mathrm{RU}}$ or $\overline{\mathrm{XU}}$	55	4
$\overline{\mathrm{BD}} \cong \overline{\mathrm{ZT}}$	$x^{3}=-1$ iff $x=-1$	37°
69	$\left(-8, \frac{15}{2}\right)$	Obtuse
1	Symmetric Property	80°
-12,15	53°	Addition Property
$\angle 1 \& \angle 8$ or $\angle 2 \& \angle 7$	$\overline{\mathrm{DR}}$	2
$\frac{-1}{3}$	45°	$\frac{-1}{3}$
Division property	If a number is divisible by 3 , then it is divisible by 6 .	$\angle 3 \& \angle 6$ or $\angle 4 \& \angle 5$
\angle NTR or \angle PTS	12	$\left(\frac{-1}{2},-1\right)$
$\overline{\mathrm{AE}}$ or $\overline{\mathrm{DR}}$	$\angle \mathrm{ABD} \& \angle \mathrm{DBC}$	24
12	$m \angle 1 \& m \angle 2=90^{\circ}$	$\angle \mathrm{BDA} \cong \angle \mathrm{CDA}$

