## 12.1 - Simplifying Imaginary Numbers

Up until now, you've been told that you can't take the square root of a negative number. Now, however, you can take the square root of a negative number, but it involves using a new number to do it. This new number is called " $i$ ", standing for "imaginary".

We define $i$ as $i=\sqrt{-1}$. So, $i^{2}=$ $\qquad$
Simplify the following using $i$.

1. $\sqrt{-8}=\sqrt{-1 \cdot 8}$
2. $\sqrt{-2}=\sqrt{-1 \cdot 2}$
3. $\sqrt{-100}=\sqrt{-1 \cdot 100}$
$=i \sqrt{2}$
$=10 \mathrm{i}$

Now that you've seen how imaginaries work, it's time to move on to complex numbers. "Complex" numbers have two parts, a "real" part (being any "real" number that you're used to dealing with) and an "imaginary" part (being any number with an " $i$ " in it).

The "standard" form for complex numbers is " $a+b i$ "; that is, real-part first and $i$-part last.

Write the complex number in the form $a+b i$.

1. $\sqrt{-9}+6$
$6+3 i$
2. $\begin{aligned} & \sqrt{-18}-7 \\ & -7+3 i \sqrt{2}-\frac{2) 18}{39}\end{aligned}$
3. $\frac{9+\sqrt{-54}}{9+3 i \sqrt{6}} \frac{254}{3 \frac{5}{3}}$
