12.4 – Quadratic Equations with Complex Solutions

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

The discriminant of a quadratic equation is represented by $b^2 - 4ac$.

The discriminant is used to find the number of solutions the quadratic equation has. If the value of the discriminant is 0, the equation has 1 solution. If the value of the discriminant is any other number, the equation has 2 solutions.

The discriminant is also used to tell us what type of solutions the quadratic equation has.

Value of the Discriminant	Number & Type of Solutions
$b^2 - 4ac > 0$ (Positive number, not 0.)	2 Real Solutions
$b^2 - 4ac = 0 \text{(Exactly 0.)}$	1 Real Solution
$b^2 - 4ac < 0$ (Negative number, not 0.)	2 Imaginary Solutions

Find the number and type of solutions for the following quadratic equations using the discriminant. Then, solve each equation using the quadratic formula.

1. $3x^2 - 5x - 2 = 0$	$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	a = 0 $b = -0$ $c = -2$
(-5)2-4(3)(-2)	$X = \frac{5 \pm \sqrt{49}}{2(3)}$	Number & Type of Solutions: 2 Real
25+24	$X = \frac{5 \pm 7}{6}$	Solution: $X = 2, \frac{-1}{3}$
49 2. $x^2 - 6x + 9 = 0$	$ \begin{array}{c} x = \frac{5+7}{6} x = \frac{5-7}{6} \\ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{4} \end{array} $	$a = \underline{\qquad} b = \underline{-6} c = \underline{9}$
(-6)2-4(1)(9)	2a	Number & Type of Solutions:
36-36 0	$\begin{array}{c} X = \underbrace{b}{2} \\ X = \underbrace{b}{2} \end{array}$	
3. $x^2 - 2x + 5 = 0$ b² - 40 C	$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$a = \b = \2 c = \5$
(-2)2-4(1)(5)	$X = \frac{2 \pm \sqrt{-16}}{2(1)}$	Number & Type of Solutions: 2 Imag
4-20 -16	$X = \frac{2 \pm 4i}{2}$ $X = \frac{2}{2} \pm \frac{4}{2}i$	Solution: $\chi = (\pm 2i)$
	x=1=2i	