5.4 - Direct Variation

Direct Variation: y varies directly as x
This means as x increases, y increases as x decreases, y decreases

Hrs worked	5	11	14	17
Pay	$\$ 30.00$	$\$ 66.00$	$\$ 84.00$	$\$ 102.00$

How would you find the constant rate?
divide pay by hours worked $\frac{30}{5}=6$
General Equation for direct variation:

$$
\frac{y}{x}=\frac{y}{x}
$$

1. If y varies directly as x and $y=6$ when $x=8$, find y when $x=12$.

$$
\frac{y}{x}=\frac{y}{x} \quad \frac{6}{8}=\frac{y}{12} \quad 8 y=72
$$

2. The force required to stretch a spring, \underline{F}, varies directly with the amount the spring is stretched, \underline{s}. Ten pounds is needed to stretch a spring 8 inches. How many pounds would be needed to stretch the spring 32 inches?

$$
\begin{aligned}
\frac{F}{S}=\frac{F}{S} & \frac{10}{8}=\frac{F}{32}
\end{aligned} \quad 8 F=320.8=40 \text { pounds }
$$

3. The distance, \underline{d}, varies directly with the time, t. If you have driven 175 miles for 5 hours. How long would you drive for 210 miles?

$$
\begin{aligned}
\frac{d}{t}=\frac{d}{t} \quad \frac{175}{5}=\frac{210}{t} \quad 175 t & =1050 \\
t & =6 \text { hours }
\end{aligned}
$$

