9.1 - Matrices

I. Terms and Definitions
A. A matrix is a rectangular array of numbers enclosed by brackets.

Examples of matrices: $\left[\begin{array}{cc}2 & 0 \\ 7 & 15 \\ -3 & 19\end{array}\right] \quad\left[\begin{array}{ccc}3 & 0 & 9 \\ 0 & -2 & 0\end{array}\right] \quad\left[\begin{array}{cc}-3 & 3 \\ 8 & -1\end{array}\right]$
B. The numbers in a matrix are called the elements of the matrix. The number of TOWS_(horizontal) and the number of columns (vertical) determine the dimensions of the matrix. The dimensions of a matrix are always written rows X columns.
(by)

Examples: What are the dimensions of the following matrices?

1. $\left[\begin{array}{cc}2 & 0 \\ 7 & 15 \\ -3 & 19\end{array}\right] \frac{\text { Rows Columns }}{3 \times 2} \begin{aligned} & 3 \text { by }\end{aligned}$
2. ${ }_{3}^{3}$
$\left[\begin{array}{ccc}3 & 0 & 9 \\ 0 & -2 & 0\end{array}\right] 2 \times 3$
C. Two matrices are equal only if they have the same dimensions and the elements in all corresponding positions are equal.

Examples: Find the value of each variable.

1. $\left[\begin{array}{ll}x & 3 \\ y & z\end{array}\right]=\left[\begin{array}{cc}-9 & 3 \\ -2 & -6\end{array}\right] \quad \begin{aligned} & x=-9 \\ & y=-2 \\ & z=-6\end{aligned}$
2. $\left[\begin{array}{ll}x+y & 3 \\ x-y & 5\end{array}\right]=\left[\begin{array}{ll}7 & 3 \\ 1 & 5\end{array}\right] \quad \begin{array}{cc}x+y=7 \\ \frac{x-y=1}{2 x=8} & 4+y=7 \\ y=3\end{array}$

$$
x=4
$$

