The figure at right is called a composite figure because it is made up of simple shapes. To find its area, first find the areas of the simple shapes and then add.
Divide the figure into a triangle and a rectangle.

\qquad
\qquad
\qquad
area of triangle: $A=\frac{1}{2} b h$
area of rectangle: $A=b h$

$$
\begin{array}{ll}
=\frac{1}{2}(5)(4) & =18(7) \\
=10 \mathrm{~cm}^{2} & \\
=126 \mathrm{~cm}^{2}
\end{array}
$$

The area of the whole figure is $10+126=136 \mathrm{~cm}^{2}$:

Find the shaded area.
1.

Total Area:

$$
A=420+30=450 \mathrm{yd}^{2}
$$

$$
\begin{aligned}
& A_{1}=l w=28(15)=420 \\
& A_{2}=l w=5(6)=30
\end{aligned}
$$

4.

$$
\begin{aligned}
& A_{1}=l w=8(3)=24 \\
& A_{2}=l w=6(2)=12
\end{aligned}
$$

Composite Figures continued
You can also find the area of composite figures by using subtraction. To find the area of the figure at right, subtract the area of the square from the area of the rectangle.
area of rectangle: area of square:
$A=b h$
$A=s^{2}$
$=12(9)$

$$
=4^{2}
$$

\qquad
$=108 \mathrm{in}^{2}=16 \mathrm{in}^{2}$

$$
=108 \mathrm{in}^{2}
$$

The shaded area is $108-16=92 \mathrm{in}^{2}$.
Find the s

