NOTES 1.2: SEGMENTS AND DISTANCE

Objective:

\qquad

To measure the LENGTH of a segment, you can use a number line to find the DISTANCE between the two endpoints, or you can use the formula:

$$
d=
$$

(Where $a \& b$ are endpoints of the segment.)
 line.
$\overline{\text { EXAMPLE }} \overline{2}$: $\overline{\text { Find }} \bar{P} \bar{Q}, \bar{Q} \bar{R}$ and $\overline{P R}$ on the number line shown below.

Segment Addition Postulate:
If Q is between P and R, then $P Q+Q R=P R$.
If $P Q+Q R=P R$, then Q is between P and R.
$\overline{\text { EXAMPLE }} \overline{1}: \overline{\text { If }} \bar{B}$ is between $\bar{A} \overline{\text { and }} \bar{C} \overline{\mathrm{and}} \bar{A} \bar{B}=\mathbf{4}$ and $\overline{B C}=\overline{5}$, then $A C=$ \qquad .
 $B C$.

$$
A B=\ldots ; B C=
$$

EXAMPLE 3: Find $L M$ if L is between N and $M, N L=6 x-5$, $L M=2 x+3$ and $N M=30$.

$$
L M=
$$

\qquad

Notes 1.2 (Continued)
When a segment is drawn on a coordinate plane, you can find its LENGTH by using the DISTANCE formula:

$$
d=
$$

$\overline{\text { EXAMPLE }} \overline{3}: \overline{\text { Find }} \bar{A} \bar{B}$.

