## **NOTES 1.6 – SPECIAL ANGLE PAIRS**

**Objective:** 

PERPENDICULAR LINES:

EXAMPLE 1:  $\overrightarrow{NP}$  and  $\overrightarrow{QR}$  are perpendicular lines intersecting at 0. Find the value of 'x'.

Not all intersecting lines form right angles, but they do form four angles that have special relationships.  $v \rightarrow 1$ 

4

2

3

|                    | Y           | W        |
|--------------------|-------------|----------|
| NAME               | DESCRIPTION | EXAMPLES |
| Adjacent<br>Angles |             |          |
| Vertical<br>Angles |             |          |
| Linear<br>Pair     |             |          |

## VERTICAL ANGLES are always congruent.

The sum of the measures of the angles in a LINEAR PAIR is 180°.

**EXAMPLE 2:**  $\overrightarrow{AC}$  and  $\overrightarrow{DE}$  intersect at B. Find the value of 'x' and the measure of  $\angle EBC$ .



К



Н

Notes 1.6 (Continued)

**EXAMPLE 4:**  $\overrightarrow{LN}$  and  $\overrightarrow{OP}$  intersect at M. Find the value of 'x' and the measures of  $\angle LMO$  and  $\angle OMN$ .



The *sum* of the measures of  $\angle$ LMO and  $\angle$ OMN in EXAMPLE 4 is 180°.

- Two angles whose measures have a sum of 180° are called supplementary angles.
- Similarly, when the *sum* of the measures of two angles is 90°, the angles are called *complementary angles*.

EXAMPLE 5: If  $\angle 1$  and  $\angle 2$  are complements, with  $m \angle 1 = (2x + 20)^{\circ}$ and  $m \angle 2 = (3x + 15)^{\circ}$ , find the value of 'x'. **EXAMPLE 6:** Find all of the missing angles.

- *m*∠1 = \_\_\_\_\_
- $m \angle 2 =$ \_\_\_\_\_
- *m*∠3 = \_\_\_\_\_
- *m*∠4 = \_\_\_\_\_



EXAMPLE 7:  $\overrightarrow{CD} \perp \overleftarrow{AB}, m \ge 1 = (6x - 3)^\circ, m \ge 2 = (7x - 11)^\circ$ . Find the value of 'x'.

