NOTES 1.6 - SPECIAL ANGLE PAIRS

Objective: \qquad

PERPENDICULAR LINES:

EXAMPLE 1: $\overleftrightarrow{\mathrm{NP}}$ and $\overleftrightarrow{\mathrm{QR}}$ are perpendicular lines intersecting at 0 .
Find the value of ' x '.

Not all intersecting lines form right angles, but they do form four angles that have special relationships.

NAME	DESCRIPTION	EXAMPLES
Adjacent Angles		
Vertical		
Angles		
Linear Pair		

VERTICAL ANGLES are always congruent.
The sum of the measures of the angles in a LINEAR PAIR is $\mathbf{1 8 0}^{\circ}$.

EXAMPLE 2: $\overleftrightarrow{\mathrm{AC}}$ and $\overleftrightarrow{\mathrm{DE}}$ intersect at B . Find the value of ' x ' and the measure of $\angle E B C$.

EXAMPLE 3: $\overleftrightarrow{G H}$ and $\overleftrightarrow{\mathrm{JK}}$ intersect at I . Find the value of ' x ' and the measure of $\angle \mathrm{JIH}$.

Notes 1.6 (Continued)
EXAMPLE 4: $\overleftrightarrow{\mathbf{L N}}$ and $\overleftrightarrow{\mathbf{O P}}$ intersect at M . Find the value of ' x ' and the measures of $\angle \mathrm{LMO}$ and $\angle O M N$.

The sum of the measures of $\angle \mathrm{LMO}$ and $\angle O M N$ in EXAMPLE 4 is 180°.

- Two angles whose measures have a sum of 180° are called supplementary angles.
- Similarly, when the sum of the measures of two angles is 90°, the angles are called complementary angles.

EXAMPLE 5: If $\angle 1$ and $\angle 2$ are complements, with $m \angle 1=(2 x+20)^{\circ}$ and $m \angle 2=(3 x+15)^{\circ}$, find the value of ' x '.

EXAMPLE 6: Find all of the missing angles.
$m \angle 1=$ \qquad
$m \angle 2=$ \qquad
$m \angle 3=$ \qquad
$m \angle 4=$ \qquad

-----------------------------EXAMPLE 7: $\overrightarrow{\mathrm{CD}} \perp \overleftrightarrow{\mathrm{AB}}, m \angle 1=(6 x-3)^{\circ}, m \angle 2=(7 x-11)^{\circ}$. Find the value of ' x '.

