
NOTES 12.2/12.4a

LATERAL AREA, SURFACE AREA & VOLUME OF PRISMS

EXAMPLE 1: Label the parts of the prisms below.

a)

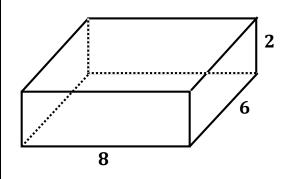
FORMULAS:

LATERAL AREA = Ph

SURFACE AREA = LA + 2B

VOLUME = Bh

 $P = perimeter\ of\ the\ base$ $B = area\ of\ the\ base$ $h = height\ of\ the\ prism\ (distance\ between\ the\ 2\ bases)$

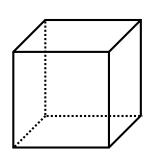

EXAMPLE 2: Name the prism below. Then find its *Lateral Area*, *Surface Area*, and *Volume*.

Name:_____

 $LA = \underline{\hspace{1cm}}$

SA =

V = _____

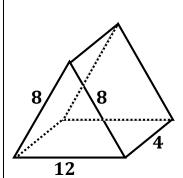


EXAMPLE 3: Find the *Lateral Area*, *Surface Area*, and *Volume* of the cube below if each edge is 5 cm.

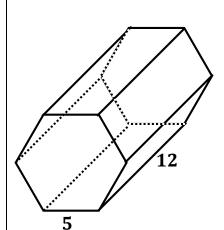
LA = _____

SA = _____

V = _____


EXAMPLE 4: Name the prism below. Then, find its *Lateral Area*, *Surface Area*, and *Volume*.

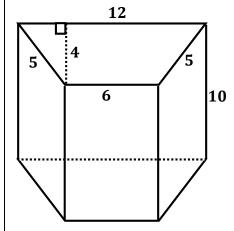
Name:_____


LA = _____

SA =

V =

EXAMPLE 5: Name the regular prism below. Then, find its Lateral Area, Surface Area, and Volume.

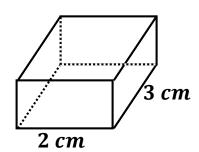

Name:_____

 $LA = \underline{\hspace{1cm}}$

SA =

V =

EXAMPLE 6: Name the prism below. Then, find its *Lateral Area*, *Surface Area*, and *Volume*.


Name:

LA =

SA =

V =

EXAMPLE 7: The *Volume* of the rectangular prism is 24 cm³. Find its *height*, *Lateral Area*, and *Surface Area*.

h =

LA =

SA =

EXAMPLE 8: The base of a triangular prism is an isosceles right triangle with legs of 3 cm. The height of the prism is 10 cm. Find its Lateral Area, Surface Area, and Volume.

LA =

SA = _____

 $\mathbf{V} =$