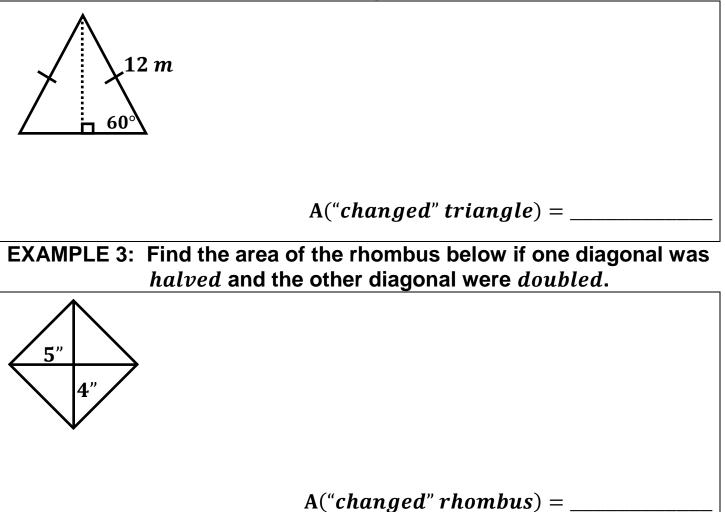

Notes 11.4

Effects of Changing Dimensions on Area & Volume

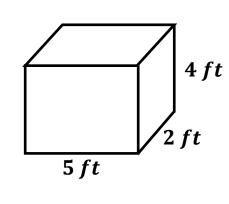
EXAMPLE 1: Find the area of the rectangle below.


A = ____

What would happen if we changed one or both dimensions in this rectangle?

Original Area	Change in Width	Change in Length	New Area	New Area Orig. Area
	<i>Twice</i> as long	<i>Twice</i> as long		
	<i>Twice</i> as long	<i>Three times</i> as long		
	Four times as long	<i>Half</i> as long		
	<i>One – fourth</i> as long	<i>Twice</i> as long		

What conjecture can you make regarding the changing of dimension(s) in a two dimensional figure?


EXAMPLE 2: Find the area of the isosceles triangle below, if its base were *doubled* and height were *tripled*.

EXAMPLE 4:

The area of a triangle is 36 square millimeters. Suppose the height was *three times* as long, and the base was *four times* as long. Find the area of the new triangle.

EXAMPLE 5: Find the volume of the prism below.

V = ____

What would happen if we changed the dimensions in this prism?

Original	Change in	Change	Change in	New	New Vol.
Volume	length	in width	height	Volume	Orig. Vol.
	<i>Twice</i> as long	<i>Twice</i> as long	<i>Three times</i> as long		
	<i>Three times</i> as long	No Change	<i>Twice</i> as long		
	4 <i>times</i> as long	<i>Half</i> as long	<i>Three times</i> as long		

What conjecture can you make regarding the effect of changing dimensions on volume?

EXAMPLE 6:

Suppose the volume of a right triangular prism is 360 *cubic units*. What would its new volume be if one of its dimensions was *twice* as long, a second dimension was *three times* as long, and the third dimension was *half* as long?

V("changed" prism) = ___

EXAMPLE 7:

Suppose the volume of a cube is $4\sqrt{3}$ cubic centimeters. What would its new volume be if one of its dimensions was *halved*, a second dimension was *doubled*, and a third dimension did not change?

 $V("changed" cube) = _$