Effects of Changing Dimensions on Area \& Volume

 EXAMPLE 1: Find the area of the rectangle below.

$$
\mathbf{A}=
$$

\qquad
What would happen if we changed one or both dimensions in this rectangle?

Original Area	Change in Width	Change in Length	New Area	New Area
	Twice as long	Twice as long		
	Twice as long	Three times as long		
	Four times as long	Half as long		
	One - fourth as long	Twice as long		

What conjecture can you make regarding the changing of dimension(s) in a two dimensional figure?

EXAMPLE 2: Find the area of the isosceles triangle below, if its base were doubled and height were tripled.

A("changed" triangle) $=$ \qquad
EXAMPLE 3: Find the area of the rhombus below if one diagonal was halved and the other diagonal were doubled.

$\mathrm{A}($ "changed" rhombus $)=$ \qquad

EXAMPLE 4:

The area of a triangle is 36 square millimeters. Suppose the height was three times as long, and the base was four times as long. Find the area of the new triangle.
A("changed" triangle) =
\qquad

EXAMPLE 5: Find the volume of the prism below.

What would happen if we changed the dimensions in this prism?

Original Volume	Change in length	Change in width	Change in height	New Volume	New Vol.Twice as long
	Twice as long				
Three times as long Three times as long	No Change	Twice as long			
	4 times as long	Half as long	Three times as long		

What conjecture can you make regarding the effect of changing dimensions on volume?

EXAMPLE 6:

Suppose the volume of a right triangular prism is 360 cubic units. What would its new volume be if one of its dimensions was twice as long, a second dimension was three times as long, and the third dimension was half as long?
V("changed" prism) =

EXAMPLE 7:

Suppose the volume of a cube is $4 \sqrt{3}$ cubic centimeters. What would its new volume be if one of its dimensions was halved, a second dimension was doubled, and a third dimension did not change?

V("changed" cube) $=$ \qquad

