12.4 - Quadratic Equations with Complex Solutions

$$
\text { If } a x^{2}+b x+c=0, \text { then } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

The discriminant of a quadratic equation is represented by $b^{2}-4 a c$.
The discriminant is used to find the number of solutions the quadratic equation has. If the value of the discriminant is 0 , the equation has 1 solution. If the value of the discriminant is any other number, the equation has 2 solutions.

The discriminant is also used to tell us what type of solutions the quadratic equation has.

Value of the Discriminant	
$b^{2}-4 a c>0 \quad($ Positive number, not 0.$)$	Number \& Type of Solutions
$b^{2}-4 a c=0 \quad$ (Exactly 0.$)$	2 Real Solutions
$b^{2}-4 a c<0 \quad($ Negative number, not 0.$)$	2 Real Solution

Find the number and type of solutions for the following quadratic equations using the discriminant. Then, solve each equation using the quadratic formula.

1. $3 x^{2}-5 x-2=0$
$a=$ \qquad $b=$ \qquad $c=$ \qquad

Number \& Type of Solutions: \qquad

Solution: \qquad
2. $x^{2}-6 x+9=0$
$a=$ \qquad $b=$ \qquad $c=$

Number \& Type of Solutions: \qquad

Solution: \qquad
3. $x^{2}-2 x+5=0$
$a=$ \qquad $b=$ \qquad $c=$ \qquad

Number \& Type of Solutions: \qquad

Solution: \qquad

