Notes 2.6 – Geometric Proofs

Objective:		
3 =		

PROPERT	PROPERTIES USED IN ALGEBRAIC & GEOMETRIC PROOFS		
Reflexive			
Symmetric			
Substitution			
Transitive			

EXAMPLE 1:	If $7 = A$ and 7	7 = B, then A	A = B.
-------------------	--------------------	-----------------	--------

Given:

Prove:

Statements	Reasons

EXAMPLE 2:

Given: $\angle 1 \cong \angle 2$

Prove: $\angle 2 \cong \angle 1$

EXAMPLE 3:

Given: ∠1 & ∠2 are right angles

Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
	L

EXAMPLE 4:

Given: a(b + 2) = 45; a = 3

Prove: b = 13

Statements	Reasons

EXAMPLE 5:

Given: ∠1 & ∠2 are supplementary

∠2 & ∠3 are supplementary

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons

EXAMPLE 6:

Given: AB = DE & BC = CD

Prove: $\overline{AC} \cong \overline{CE}$

Statements	Reasons
	+