9.1 - Matrices I

I. Terms and Definitions
A. A \qquad is a rectangular array of numbers enclosed by brackets.

Examples of matrices: $\left[\begin{array}{cc}2 & 0 \\ 7 & 15 \\ -3 & 19\end{array}\right] \quad\left[\begin{array}{ccc}3 & 0 & 9 \\ 0 & -2 & 0\end{array}\right] \quad\left[\begin{array}{cc}-3 & 3 \\ 8 & -1\end{array}\right]$
B. The numbers in a matrix are called the \qquad of the matrix. The number of \qquad (horizontal) and the number of \qquad (vertical) determine the \qquad of the matrix. The dimensions of a matrix are always written rows X columns.

Examples: What are the dimensions of the following matrices?

1. $\left[\begin{array}{cc}2 & 0 \\ 7 & 15 \\ -3 & 19\end{array}\right]-\quad x-$
2. $\left[\begin{array}{ccc}3 & 0 & 9 \\ 0 & -2 & 0\end{array}\right]-X$
C. In matrix algebra, a real number is called a \qquad . To multiply a matrix by a scalar, multiply each element of the matrix by the scalar.

Example: $-2\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}\square & \square\end{array}\right]=\left[\begin{array}{ll}\square & - \\ \square & -\end{array}\right]$

