9.2 - Matrices II

A. If two matrices have the same dimensions, they may be added by finding the sums of the corresponding elements.

Example: If $A=\left[\begin{array}{ccc}1 & 3 & -2 \\ 4 & 0 & -5\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 1 & -5 \\ 0 & -7 & 2\end{array}\right]$, find $A+B$.
$A+B=\left[\begin{array}{lll}\square & \square & \square\end{array}\right]=\left[\begin{array}{lll}\square & - & - \\ - & - & -\end{array}\right]$
B. If two matrices have the same dimensions, they may be subtracted by finding the difference of the corresponding elements.

Example: If $A=\left[\begin{array}{ccc}1 & 3 & -2 \\ 4 & 0 & -5\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 1 & -5 \\ 0 & -7 & 2\end{array}\right]$, find $A-B$.

Example: Top Three Western Conference Teams

Home Games
Wins Losses
LALaker s
Utah
Portland $\left[\begin{array}{ll}37 & 4 \\ 36 & 5 \\ 35 & 6\end{array}\right]$

Away Games

Wins Losses
$\left.\begin{array}{c}\text { LALaker s } \\ \text { Utah } \\ \text { Portland }\end{array} \begin{array}{ll}26 & 15 \\ 19 & 22 \\ 24 & 17\end{array}\right]$

Add these matrices. What does the result represent?
C. Two matrices are equal only if they have the same dimensions and the elements in all corresponding positions are equal.

Examples: Find the value of each variable.

1. $\left[\begin{array}{ll}x & 3 \\ y & z\end{array}\right]=\left[\begin{array}{cc}-9 & 3 \\ -2 & -6\end{array}\right]$
2. $\left[\begin{array}{ll}x+y & 3 \\ x-y & 5\end{array}\right]=\left[\begin{array}{ll}7 & 3 \\ 1 & 5\end{array}\right]$
