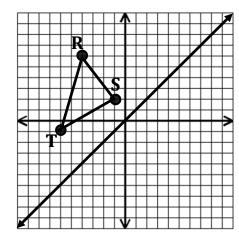

Transformations

REFLECTIONS

EXAMPLE 1: Reflect $\triangle ABC$ across the x - axis and name the coordinates.


$$A(\underline{\hspace{1cm}},\underline{\hspace{1cm}}) \rightarrow A'(\underline{\hspace{1cm}})$$

$$B(\underline{\hspace{1cm}},\underline{\hspace{1cm}}) \xrightarrow{\hspace{1cm}} B'(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

$$\mathbb{C}(\underline{\hspace{1cm}}) \to \mathbb{C}'(\underline{\hspace{1cm}})$$

Do you see a pattern?

EXAMPLE 2: Reflect $\triangle RST$ across the line y = x and name the coordinates.

$$R(\underline{\hspace{1cm}},\underline{\hspace{1cm}}) \rightarrow R'(\underline{\hspace{1cm}})$$

$$S(\underline{\hspace{1cm}},\underline{\hspace{1cm}}) \rightarrow S'(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

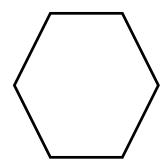
$$T(\underline{\hspace{1cm}},\underline{\hspace{1cm}}) \rightarrow T'(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

Do you see a pattern?

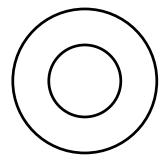
What would the pattern be to reflect across the y - axis?


LINES OF SYMMETRY

EXAMPLE 3: What, if any, were the lines of symmetry in EXAMPLES 1 & 2?

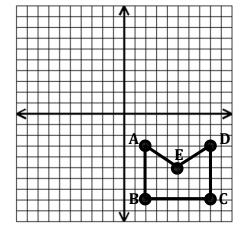

- a) EXAMPLE 1 –
- b) EXAMPLE 2 -

EXAMPLE 4: Draw the line(s) of symmetry, if any, for the following figures.


a)

b)

c)



d)

TRANSLATIONS

EXAMPLE 5: Translate the figure left 6 and up 8 and name the coordinates.

A'(____)

B'(____)


C'(_____)

D'(_____)

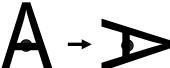
E'(____)

ROTATIONS

Two types:

Determined by degrees:

90°:


180°:

270°:

360°:

EXAMPLE 6: Describe each rotation.

a)

c) |

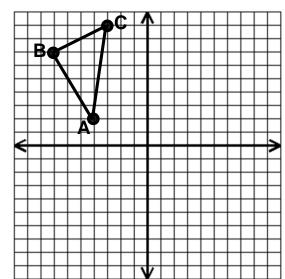
EXAMPLE 7: Draw the resulting triangles when the triangle is rotated 90°, 180°, and 270° clockwise.

90° Clockwise

Original Points

A(_____)

B(_____)


 $C(___, ___)$

<u>180°</u>

A'(____)

B'(_____)

C'(_____)

(270° Counter-clockwise)

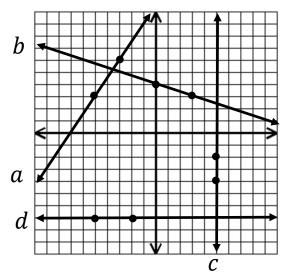
A'(____)

B'(_____)

C'(_____)

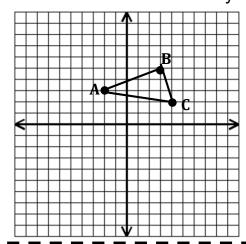
270° Clockwise (90° Counter-clockwise)

A'(_____)

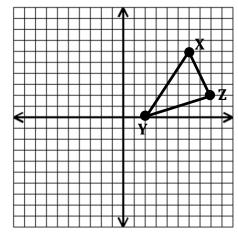

B'(_____)

C'(_____)

DILATIONS WITH SLOPE


EXAMPLE 8: Use the graph below to find the following slopes.

- a) slope of line *a*:_____
- b) slope of line *b*:______
- c) slope of line *c*:_____
- d) slope of line *d*:_____


Slope can be useful in dilating images.

EXAMPLE 9: Use "slope" to produce a dilation of $\triangle ABC$ with a scale factor of 2. Use "B" as your center.

- A' (_____)
- C' (_____)

EXAMPLE 10: Use "slope" to produce a dilation of ΔXYZ with a scale factor of $\frac{1}{2}$. Use "X" as your center.

- Y' (_____)
- Z' (_____)