\qquad Date \qquad Period \qquad

9.2 - Matrices II

I. Perform the indicated operation.

1. $\left[\begin{array}{cc}1 & 2 \\ -3 & 1\end{array}\right]+\left[\begin{array}{ll}1 & 5 \\ 2 & 0\end{array}\right]$	2. $\left[\begin{array}{cc}4 & 2 \\ -9 & 5\end{array}\right]-\left[\begin{array}{ll}2 & 8 \\ 4 & 8\end{array}\right]$
3. $\left[\begin{array}{ccc}7 & -3 & 2 \\ 0 & 8 & 1 \\ 8 & 6 & -6\end{array}\right]+\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$4 .\left[\begin{array}{ccc}9 & 1 & 6 \\ -5 & 0 & 9 \\ 2 & -2 & 3\end{array}\right]+\left[\begin{array}{ccc}9 & 0 & 4 \\ -4 & 6 & 8 \\ 3 & -5 & -6\end{array}\right]$
5. $\left[\begin{array}{cc}0 & -8 \\ 3 & 0 \\ -4 & 2\end{array}\right]-\left[\begin{array}{cc}5 & 4 \\ 2 & 5 \\ -7 & -5\end{array}\right]$	$6 .\left[\begin{array}{ccc}2 & -1 & 7 \\ 5 & 8 & 2\end{array}\right]-\left[\begin{array}{ccc}2 & 9 & 3 \\ -5 & 2 & -2\end{array}\right]$

II. Given the following matrices, perform the indicated matrix operations.

$$
A=\left[\begin{array}{cc}
1 & 3 \\
-2 & 5 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{cc}
4 & 9 \\
7 & 1 \\
-2 & 6
\end{array}\right]
$$

7. $\mathrm{A}+\mathrm{B}=\mathrm{B} \mathrm{~A}-\mathrm{B}=$.	$9 .-2 \mathrm{~A}=$	

10. Women in Labor Force (millions)

Subtract the two matrices. What does this result represent?

All Women

Married Other*
1989
1990
1991 $\left[\begin{array}{ll}30.5 & 24.7 \\ 31.0 & 25.2 \\ 31.1 & 25.2\end{array}\right]$

Women with Children
Married Other*
1989
1990
1991 $\left[\begin{array}{ll}16.4 & 5.5 \\ 16.5 & 5.7 \\ 16.6 & 5.8\end{array}\right]$
*widowed, divorced, separated, or single
Does adding these matrices give a meaningful result? Justify your answer.
11. Last month a manufacturer shipped three computer models to two warehouses. The units shipped are shown in the following matrix:

This month the company wants to double the number of units.
whse 1 whse 2
Use scalar multiplication to find the number of units to ship.
Model A A
Model B
Model C $\left[\begin{array}{cc}100 & 50 \\ 60 & 45 \\ 25 & 40\end{array}\right]$
III. Solve for the variables.

12. $\left[\begin{array}{cc}x+2 & 8 \\ 2 y & 2 z\end{array}\right]=\left[\begin{array}{cc}2 x+6 & 8 \\ 18 & -8\end{array}\right]$	$13 .\left[\begin{array}{cc}2 x & 8 \\ y & -6\end{array}\right]+\left[\begin{array}{cc}3 & -2 \\ x & 5\end{array}\right]=\left[\begin{array}{cc}5 & 6 \\ 3 & -1\end{array}\right]$
$14 .\left[\begin{array}{cc}2 x-5 & 4 \\ 3 & 3 y+12\end{array}\right]=\left[\begin{array}{cc}25 & 4 \\ 3 & y+18\end{array}\right]$	$15 .\left[\begin{array}{cc}x+8 & -5 \\ 3 & -y\end{array}\right]=\left[\begin{array}{cc}38 & -5 \\ 3 & 4 y-10\end{array}\right]$
$16 .\left[\begin{array}{c}3 x \\ 4\end{array}\right]=\left[\begin{array}{c}-9 \\ y+6\end{array}\right]$	$17 .\left[\begin{array}{cc}2 & 2 \\ -1 & 6\end{array}\right]-\left[\begin{array}{cc}4 & -1 \\ 0 & 5\end{array}\right]=\left[\begin{array}{cc}x & y \\ -1 & z\end{array}\right]$

